こんにちは~
前回の予告通り、今回は“非同次連立1次方程式”の解の求め方について記事にしていきたいと思います。
それでは~
シュワッチ!
第2回は“非同次連立1次方程式”についてです。
前回、紹介した“同時連立1次方程式”は“=0”という形をしていましたが、今回の非同次連立1次方程式はそうではありません。
でも、逆に言うとそこしか違いがないので同次連立1次方程式の解き方が分かっていれば、すんなり内容が入ってくると思います。
それでは、例題を使って理解していきましょう!
*第1回:【院試対策】線形代数①(同次連立1次方程式)
“非同時連立1次方程式”も僕の大学では頻出の問題となっています。
<例題>
以下の連立1次方程式を解け。
\begin{cases}
x – y – 6z + w + 2v = 4 & \\
2x – y – z – 2w + 3v = 5 & \\
3x – y + 4z – 5w + 6v = 6
\end{cases}
<解法>
STEP1:非同次連立1次方程式ではまず、拡大係数行列を立てます。
\[
A = \left(
\begin{array}{ccccc|c}
1 & -1 & -6 & 1 & 2 & 4\\
2 & -1 & -1 & -2 & 3 & 5\\
3 & -1 & 4 & -5 & 6 & 6
\end{array}
\right)
\]
STEP2:行同士を足し引きして、簡単な形にします。
①1行目×(-2)+2行目
\[
\left(
\begin{array}{ccccc|c}
1 & -1 & -6 & 1 & 2 & 4\\
0 & 1 & 11 & -4 & -1 & -3\\
3 & -1 & 4 & -5 & 6 & 6
\end{array}
\right)
\]
②1行目×(-3)+3行目
\[
\left(
\begin{array}{ccccc|c}
1 & -1 & -6 & 1 & 2 & 4\\
0 & 1 & 11 & -4 & -1 & -3\\
0 & 2 & 22 & -8 & 0 & -6
\end{array}
\right)
\]
③3行目÷2
\[
\left(
\begin{array}{ccccc|c}
1 & -1 & -6 & 1 & 2 & 4\\
0 & 1 & 11 & -4 & -1 & -3\\
0 & 1 & 11 & -4 & 0 & -3
\end{array}
\right)
\]
④3行目ー2行目
\[
\left(
\begin{array}{ccccc|c}
1 & -1 & -6 & 1 & 2 & 4\\
0 & 1 & 11 & -4 & -1 & -3\\
0 & 0 & 0 & 0 & 1 & 0
\end{array}
\right)
\]
⑤1行目+2行目
\[
\left(
\begin{array}{ccccc|c}
1 & 0 & 5 & -3 & 1 & 1\\
0 & 1 & 11 & -4 & -1 & -3\\
0 & 0 & 0 & 0 & 1 & 0
\end{array}
\right)
\]
⑥1行目ー3行目
\[
\left(
\begin{array}{ccccc|c}
1 & 0 & 5 & -3 & 0 & 1\\
0 & 1 & 11 & -4 & -1 & -3\\
0 & 0 & 0 & 0 & 1 & 0
\end{array}
\right)
\]
⑦2行目+3行目
\[
\left(
\begin{array}{ccccc|c}
1 & 0 & 5 & -3 & 0 & 1\\
0 & 1 & 11 & -4 & 0 & -3\\
0 & 0 & 0 & 0 & 1 & 0
\end{array}
\right)
\]
STEP3:状況整理
\[
\left(
\begin{array}{ccccc}
1 & 0 & 5 & -3 & 0 \\
0 & 1 & 11 & -4 & 0\\
0 & 0 & 0 & 0 & 1
\end{array}
\right)
\left(
\begin{array}{ccc}
x \\
y \\
z \\
w \\
v
\end{array}
\right)
=
\left(
\begin{array}{ccc}
1 \\
-3 \\
0
\end{array}
\right)
\]
STEP4:方程式の形に直す
\begin{eqnarray}
\left\{
\begin{array}{l}
x + 5z – 3w = 1 \\
y + 11z – 4w = -3 \\
v = 0
\end{array}
\right.
\end{eqnarray}
STEP5:終了♪
\begin{eqnarray}
z = k_1,w = k_2(任意の定数)とすると、
\end{eqnarray}
\[
P = k_1\left(
\begin{array}{ccc}
-5 \\
-11 \\
1 \\
0 \\
0
\end{array}
\right)
+ k_2\left(
\begin{array}{ccc}
3 \\
4 \\
0 \\
1 \\
0
\end{array}
\right)
+\left(
\begin{array}{ccc}
1 \\
-3 \\
0 \\
0 \\
0
\end{array}
\right)
\]
いかがでしたでしょうか?
この数式を書くのが中々時間がかかるので1問しか紹介できませんでしたが、上の例題で示した解法が非同時連立1次方程式の基本的な解の求め方となります。
次回は“行列の和積”について紹介いたします。
お楽しみに♪
▲▲▲アリガ島▲▲▲
「【院試対策】線形代数③(行列の和積)」