大学院入試 専門内容 線形代数

【院試対策】線形代数④(行列の固有値と固有ベクトル)

投稿日:


こんにちは~

前回の予告通り、今回は“行列の固有値と固有ベクトル”の求め方について記事にしていきたいと思います。

それでは~

シュワッチ!


 

回:【院試対策】線形代数④(行列の固有値と固有ベクトル)

第4回は”行列の固有値と固有ベクトル”についてです。
まず、「固有値と固有ベクトルとは何ぞや?」と思いますよね!

なので、定義から↓

n次元正方行列AについてAX=λXが成り立つ時、n次元列ベクトルXと実数λのことをそれぞれ固有ベクトル固有値といいます。

これだけではイメージがつきにくいと思うので、固有ベクトルについての詳細を↓

普通、ベクトル同士を掛けたもの(AX)はベクトルXとは違う方向になる事がほとんど。
その中で、ベクトル同士の掛け算を行っても奇跡的にオリジナルのベクトルXと方向が一致するベクトルが固有ベクトルなのです!

どうです?なんか、素敵じゃないですか(笑)

定義を説明した所で、例題を使って実践演習をしていきましょう!

<例題1>
以下の行列Aの固有値と固有ベクトルを求めよ。
\[
A = \left(
\begin{array}{ccc}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 3
\end{array}
\right)
\]

<解法>
\begin{equation}
AX = λX より、(A – λE)X = 0
\end{equation}

\[
ここで、T = A – λE = \left(
\begin{array}{ccc}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 3
\end{array}
\right)
– \left(
\begin{array}{ccc}
λ & 0 & 0 \\
0 & λ & 0 \\
0 & 0 & λ
\end{array}
\right)
\]

\[
= \left(
\begin{array}{ccc}
1-λ & 2 & 0 \\
2 & 1-λ & 0 \\
0 & 0 & 3-λ
\end{array}
\right)
とおく。
\]

\begin{equation}
すると、TX = 0・・・①であり、
\end{equation}

\[
\mathrm{det}T = |T| = \left|
\begin{array}{ccc}
1 – λ & 2 & 0 \\
2 & 1 – λ & 0 \\
0 & 0 & 3 – λ
\end{array}
\right| = 0
となればいいことがわかる。
\]

\begin{equation}
= (1 – λ)^2 (3 – λ) – 4 (3 – λ)
\end{equation}

\begin{equation}
= (1 – 2λ + λ^2)(3 – λ) – 12 + 4λ
\end{equation}

\begin{equation}
= -λ^3 + 5λ^2 – 3λ – 9 = 0
\end{equation}

\begin{equation}
λ^3 – 5λ^2 + 3λ + 9 = 0
\end{equation}

\begin{equation}
(λ + 1)(λ^2 – 6λ + 9) = 0
\end{equation}

\begin{equation}
(λ + 1)(λ – 3)^2 = 0
\end{equation}

\begin{equation}
よって、固有値はλ = -1,3
\end{equation}

次にそれぞれの固有値における固有ベクトルを求めます。
\begin{equation}
ⅰ)λ = -1の時、①をT_{1}X_{1}=0,
\end{equation}
\[
X_{1}=\left(
\begin{array}{ccc}
α_{1} \\
α_{2} \\
α_{3}
\end{array}
\right)
とすると、
\]

\[
\left(
\begin{array}{ccc}
2 & 2 & 0\\
2 & 2 & 0 \\
0 & 0 & 4
\end{array}
\right)
\left(
\begin{array}{ccc}
α_{1}\\
α_{2}\\
α_{3}
\end{array}
\right)
= \left(
\begin{array}{ccc}
0\\
0\\
0
\end{array}
\right)
\]

\begin{eqnarray}
\begin{cases}
2α_{1} + 2α_{2} = 0 & \\
4α_{3} = 0
\end{cases}
\end{eqnarray}

\begin{equation}
α_{1}=k_{1}とすると、α_{2}=-k_{1}より、固有ベクトルX_{1}は
\end{equation}

\[
X_{1}=k_{1}\left(
\begin{array}{ccc}
1 \\
-1 \\
0
\end{array}
\right)
(k_{1}\neq0)
\]

\begin{equation}
ⅱ)λ = 3の時、①をT_{2}X_{2}=0,
\end{equation}
\[
X_{2}=\left(
\begin{array}{ccc}
α_{4} \\
α_{5} \\
α_{6}
\end{array}
\right)
とすると、
\]

\[
\left(
\begin{array}{ccc}
-2 & 2 & 0\\
2 & -2 & 0 \\
0 & 0 & 0
\end{array}
\right)
\left(
\begin{array}{ccc}
α_{4}\\
α_{5}\\
α_{6}
\end{array}
\right)
= \left(
\begin{array}{ccc}
0\\
0\\
0
\end{array}
\right)
\]

\begin{eqnarray}
\begin{cases}
-2α_{4} – 2α_{5} = 0 & \\
α_{6} = k_{3}
\end{cases}
\end{eqnarray}

\begin{equation}
α_{4}=k_{2}とすると、α_{5}=-k_{2}より、固有ベクトルX_{2}は
\end{equation}

\[
X_{2}=k_{2}\left(
\begin{array}{ccc}
1 \\
-1 \\
0
\end{array}
\right)
+k_{3}\left(
\begin{array}{ccc}
0 \\
0 \\
1
\end{array}
\right)
(k_{2},k_{3}\neq0)
\]

\begin{equation}
*ちなみにλが重解である固有ベクトルX_{2}は以下のように分けることが出来、互いに線形独立です。
\end{equation}

\[
X_{2}’=k_{2}\left(
\begin{array}{ccc}
1 \\
-1 \\
0
\end{array}
\right)
,X_{2}”=k_{3}\left(
\begin{array}{ccc}
0 \\
0 \\
1
\end{array}
\right)
\]


 

いかがでしたでしょうか?

この数式を書くのが中々時間がかかるので1問しか紹介できませんでしたが、上の例題で示した解法が行列の固有値と固有ベクトルの基本的な求め方となります。

それでは、次回は今回導いた固有値と固有ベクトルを用いれば“行列の対角化”が出来るので、その方法について紹介いたします。

お楽しみに♪

▲▲▲アリガ島▲▲▲

次回予告
「【院試対策】線形代数⑤(固有値と固有ベクトルを用いた行列の対角化)」







-大学院入試, 専門内容, 線形代数

執筆者:


  1. […] 固有ベクトルの求め方について書きましたが、今回はそれらを用いた対角化について書いていきます! 前回の記事はこちら↓ ・【院試対策】線形代数④(行列の固有値と固有ベクトル) […]

comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

関連記事

「電圧降下」についてガチで考える

こんにちは~ ”電圧”って、たしか小学生4年生の頃くらいに初めて習ってから中学、高校とずっと物理の時間に出てきましたよね~。 ”電圧”について最も有名な式は以下の式(1)”オームの法則”でしょうか。 …

秋月版L6470使用ステッピングモータードライバの使い方

こんばんは。 最近は「5月ってこんなに暑かったけ~☀」って思っています。なんか、梅雨明けぐらいから暑くなるイメージじゃなかったですか? ちなみに、最近観たアニメは“SHIROBAKO”と …

ストローで飲み物が飲める理由、知ってる?

こんばんは~ *内容は僕が理解している内容なので、正確性は保証できませんm(_ _)mゴメン 突然ですが、飲み物を飲むとき、何か意識して飲んでいますか? 普段、特に意識していなかったら何の疑問も抱く …

Visual Studio 2017 Communityを使ったC#入門~第1回:クラスを使って簡単なフォームを作る~

こんばんは。 報告が遅くなりましたが、今年から4年になり研究室に配属されました♪毎日が勉強の日々です!3年生までは「電子工作もCADも割と出来る方かな~」なんて自信を持っていたのですが、教授と比べたら …

「圧縮」についてガチで考える

こんにちは~ 普段、何かを圧縮する機会って結構ありますよね! 空き缶をつぶしたり、ゴミ箱🚮の中にごみを押し込んだり・・・。 後はベンチに座っていて体重でベンチが壊れてしまわないか心配に …